Equivalent Continuous G-frames in Hilbert C*-modules (communicated by Palle Jorgensen.)
نویسندگان
چکیده
In this paper, we investigate the mapping of continuous g-frames in Hilbert C*-module under bounded operators. So, operators that preserve continuous g-frames in Hilbert C*-module were characterized. Then, we introduce equivalent continuous g-frames in Hilbert C*-module by the mapping of continuous g-frames in Hilbert C*-module under bounded operators. We show that every continuous g-frame in Hilbert C*-module is equivalent by a continuous Parseval g-frame in this space. We also verify the relation between the mapping of continuous g-frame in Hilbert C*-module and continuous g-frame operator in Hilbert C*-module. Then, we conclude if two continuous Parseval g-frames in Hilbert C*-module are equivalent then they are unitary equivalent.
منابع مشابه
Controlled *-G-Frames and their *-G-Multipliers IN Hilbert C*-Modules
In this paper we introduce controlled *-g-frame and *-g-multipliers in Hilbert C*-modules and investigate the properties. We demonstrate that any controlled *-g-frame is equivalent to a *-g-frame and define multipliers for (C,C')- controlled*-g-frames .
متن کاملThe study on controlled g-frames and controlled fusion frames in Hilbert C*-modules
Controlled frames have been introduced to improve the numerical efficiency of iterative algorithms for inverting the frame operator on abstract Hilbert spaces. Fusion frames and g-frames generalize frames. Hilbert C*-modules form a wide category between Hilbert spaces and Banach spaces. Hilbert C*-modules are generalizations of Hilbert spaces by allowing the inner product to take values in a C*...
متن کاملG-frames in Hilbert Modules Over Pro-C*-algebras
G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...
متن کاملFrames in super Hilbert modules
In this paper, we define super Hilbert module and investigate frames in this space. Super Hilbert modules are generalization of super Hilbert spaces in Hilbert C*-module setting. Also, we define frames in a super Hilbert module and characterize them by using of the concept of g-frames in a Hilbert C*-module. Finally, disjoint frames in Hilbert C*-modules are introduced and investigated.
متن کاملG-frames and their duals for Hilbert C*-modules
Abstract. Certain facts about frames and generalized frames (g- frames) are extended for the g-frames for Hilbert C*-modules. It is shown that g-frames for Hilbert C*-modules share several useful properties with those for Hilbert spaces. The paper also character- izes the operators which preserve the class of g-frames for Hilbert C*-modules. Moreover, a necessary and suffcient condition is ob- ...
متن کامل